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Abstract—Cryo-electron microscopy (Cryo-EM) is widely 
used in molecular structure determination and drug discovery. 
Experimental cryo-EM images suffer from the noises 
introduced by electron beam dose and sample preparation. 
Although many approaches have been proposed to improve the 
signal-to-noise ratio (SNR) for cryo-EM image denoising, the 
noises are still presented after 3D reconstruction and can 
obstruct the analysis and visualization of the 3D density map. 
Here we present DeepTracer-Denoising, a method for 3D 
electron density map denoising. We employ a 3D Neural 
Network to learn the pattern of noises and the biological 
structure from density maps. Our method is designed to work 
on medium to high-resolution maps ranging from 2.5 Å to 10.0Å. 
It is configurated with two modes to tackle both background 
noise and structural noise in a 3D density map. Our method can 
correctly identify 97.70% background noise while preserving 
96.46% density of the native structure. For the maps that 
contain structural noise, DeepTracer-Denoising achieves an 
overall accuracy of 98.95%.  
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I. INTRODUCTION 

 Cryo-electron microscopy (Cryo-EM) is an awarded 
technology of the 2017 Nobel Prize in Chemistry. Since the 
first three-dimensional (3D) image of protein was generated 
using electron microscopy in 1990, cryo-EM has been noticed 
for its potential for resolving biomolecules 3D structures. 
Recently, With the rapid advancement in electron detector and 
image processing, cryo-EM is now capable of resolving high-
resolution 3D structures. Notably, in the past decade, the 
number of 3D biological structures resolved by cryo-EM has 
increased exponentially [1]-[2], and it has risen to one of the 
leading techniques for structural biology [3]-[5].  

Cryo-EM 3D structure, also known as cryo-EM density 
map, is 3D reconstructed from 2D cryo-EM images taken 
from microscopy [6]. Raw cryo-EM images are suffered from 
the low signal-to-noise ratio (SNR) problem [7]. To reduce the 
noise, there have been many approaches proposed to enhance 
the SNR of 2D cryo-EM images in the past decade. The early 
conventional methods like BM3D [8], band-pass filter [9], and 
Wiener filter [10] approach the denoising problem through 
mathematical image restoration algorithms, which can 
improve the contrast and decrease the noise level. Recently, 
due to rapid growth in computation power and available data, 
learning-based algorithms, particularly deep convolutional 
neural networks (CNNs), have demonstrated a revolutionary 
performance in image processing and denoising [11]. Cryo-
CARE [12] and Topaz-Denoise [13], two CNN-based 2D 
cryo-EM image denoising approach, was proposed by 

adopting the Noise2Noise [14] framework - a general deep 
CNNs framework for image restoration. CDAE [15] is a 
cascade of denoising autoencoder for single particle cryo-EM 
images. “Robust denoising for cryo-EM” [16] is a newly 
proposed model which combines autoencoder with robust 
generative adversarial networks (GANs) and achieves an 
efficient and robust cryo-EM denoising performance. 
Recently, a cryo-EM image denoising framework, called 
Noise-Transfer2Clean [17], was proposed; it used a GAN to 
synthesize noise with a CNN as denoiser and achieved a state-
of-the-art result. 

With extensive research from the past, the image 
restoration denoising algorithms for cryo-EM images have 
reached a very high level, and it greatly helps the cryo-EM 
particle picking and 3D reconstruction steps to produce the 
final 3D electron density map. However, denoising through 
improving SNR has a shortcoming, that it is unable to 
“completely” eliminate noises. Improving SNR can shrink 
noise signals to a low level while amplifying the true structure 
signals; however, it cannot modify the noise signals directly 
to 0. For this reason, we can still observe noises when viewing 
the cryo-EM density map with a low contour level after the 
3D reconstruction (Fig. 1). According to previous research 
[18], the noise in cryo-EM comes from three aspects: (1) 
“structural noise” sourced from ice matrix on top of the 
molecule surface and a thin layer of the superimposed carbon 
film. Furthermore, the portion of molecule structure that is not 
reproducible due to conformational variations is also counted 
as “structural noise.” (2) “shot noise” sourced from the 
quantum nature of the electron radiation. (3) “digital noise” 
sourced from the photograph recording and subsequent 
digitization. In the cryo-EM density map, all these noises are 
carried over from cryo-EM images and remain in existence. 
Shot noise and digital noise do not have a specific shape, and 
they distribute randomly like dust in the density map. We will 
summarize them as background noise in this paper. Structural 
noise, however, has a specific shape, and the density signal is 
often stronger than background noise, as in Fig. 1. For the 
cryo-EM density map, the noise voxel signals are troublesome 
and redundant. Not only do they shade the actual structure 
from observation, but they can also interfere with the 
prediction accuracy of automatic cryo-EM protein structure 
modeling algorithms such as DeepTracer [19] and other state-
of-the-art structure analysis algorithms. 

To eliminate noise in the cryo-EM density map, we build 
a convolutional neural network (CNN) denoising model to 
proceed with noise classification on the 3D electron density 
map. We designed a procedure for generating a 3D cryo-EM 
training dataset and, in addition, proposed a metric to measure 
the similarity between the cryo-EM density map and the 
corresponding solve biomolecule structure for dataset 
filtering. Our model’s performance for both background noise 
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and structural noise is evaluated on a test set of 304 cryo-EM 
density maps. Lastly, we compared our approach with 
ChimeraX’s [20] hide-dust tool. To summarize, our 
contributions are as follows: 

• We proposed a CNN-based voxel classification 
approach for 3D electron density map denoising, 
which can eliminate noise signals completely. 

• We present the first deep learning denoising 
approach for 3D electron density maps, and it can 
denoise both structural and background noise 
efficiently and accurately. 

II. MATERIALS AND METHOD 

A. Method Overview 

 Classification of voxel’s type is the key to our denoising 
approach. To take advantage of CNN’s image recognition 
ability and learn the pattern of biological structure, we adopt 
U-Net [21], which is a fully convolutional network 
architecture designed for biomedical image recognition. The 
original U-Net was proposed as a 2D CNN architecture and 
suited for various kinds of 2D biological images taken by 
microscopies. However, it does not fit cryo-EM structure. 
Cryo-EM structure is in the format of 3D electron density 
map, which is 3D reconstructed from 2D micrographs. It 
carries all of the information in 2D images and in additionally 
records the spatial conformation of the biological, which could 
aid the identification of biological structure. To take 
advantage of this, we modify the original U-Net as a 3D U-
Net to work on electron density map data [19]. Since electron 
density maps have various image sizes, to standardize the 
input of the model, we cut the map into multiple unitary sizes 
of (64,64,64) as input. Also, different from the original U-Net, 
we modify and add padding for each convolution layer to 
maintain the dimension. The output of the neural network has 
a shape of (64,64,64,2), which is the SoftMax prediction result 
for every voxel, indicating the binary classification 
probabilities to be either noise or structure. Finally, using the 
classification result as a mask, we filter out the noise voxels 
and get the denoised 3D cryo-EM structure. The prediction 
pipeline is shown in Fig. 2. 

 

Fig. 2.   DeepTracer-Denoising prediction pipeline 

All of the electron density maps are preprocessed before 
training and prediction. We reset all of the voxels below 0 to 
0 and normalized the range of voxel values to 0 ~ 1. 
Furthermore, all density maps are resampled on a grid voxel 
size of (1Å, 1Å, 1Å� to maintain the unitary. 

B. Training Dataset Generation 

To train a voxel-wised classification model, our dataset is 
built with data pairs of X (input) and Y (target), where X is the 
original cryo-EM structure (3D electron density map), and Y 
is the corresponding labeled ground truth map. Both X and Y 
data maps should have the exact dimensions, inferring a one-
to-one mapping of each voxel’s class (structure or noise). 3D 
electron density maps are collected from the 
EMDataResource website [22] alone with their solved 
biological structure (PDB file). Labeled ground truth maps are 
generated based on biological structure. This labeling 
procedure is the most important while also the most 
challenging step amount this denoising approach since the 
neural network’s classification performance is highly 
correlated with the labeling style, yet the style can be arbitrary 

Fig.1.   Example of noises in 3D cryo-EM density map (EMD-21150 from EMDataResource [22]). Background noises is scattered around the map and a 
ring shape structural noise is encloseing the center protein structure. Top right is the visualization of solve protein structure and a simulated map  generated 
from the PDB served as a reference of the clean 3D electron density map. (a) Side view. (b) Front view. 



as there is no such “correct label”1. In the following sections, 
we explained the steps to generate labeled ground truth map 
based on simulated electron density map. 

1) Simulated Eelectron Density Map 
 Simulated electron density map is created by representing 
each atom in the biological structure as a 3D gaussian 
distribution centered on its location to simulate its electron 
density cloud. It is an ideal representation of proteins under 
the perfect cryo-electron microscopy without the interference 
of noises, which means that any nonzero reading in the 
simulated density map indicates the imaging of biological 
structure. By utilizing the simulated map, we could label all 
the nonzero voxels as 1 (indicating structure) and the rest of 
the area as 0 (indicating empty space or noise). As mentioned 
above, we know there is a boundary issue with the electron 
density map (footer. 1). Since our denoising goal is to mimic 
human perception and eliminate noises as much as possible 
while maintaining most of the structure information, we 
decided to use a 3σ threshold for the simulated map, which is 
guaranteed to cover 99.73% of total imaging of biological 
structure [23] (see discussion). 

2) Standardizing Voxel Size 
The data of electron density map is essentially a 3D array; 

it is difficult to identify the actual size of the biological 
structure without knowing the voxel size of the map (the 
physical size of each data grid). Furthermore, density maps 
have various different resolutions due to equipment 
limitations. It is almost impossible to resolve the molecule 
structure size with varied electron density resolution and 
unknown voxel size. This challenges the neural network; for 
example, an alpha helix in a low-resolution map can be too 
blurred to distinguish between being a straight backbone chain 
in a high-resolution map. To tackle this problem, we 
standardize the voxel size of all input density maps by 
resampling them on the grid size of 1.0 Å. With the fixed 
voxel size, the primary and secondary structures can be 
distinguished by counting the number of voxels it occupies 
since their physical size is different. 

3) Step by Step Procedure 
 The detailed steps to generate a labeled map are as follows: 
(1) Create a blank voxel grid with 1.0 Å voxel size and the 
same spatial dimension as the input 3D electron density map. 
(2) Simulating each atom’s electron density imaging by 3D 
gaussian distribution according to the simulating resolution 
and number of electrons in the atom. Then, embedding atoms 
into the blank voxel grid using their coordinate information. 
(Note that we used a 3-sigma threshold for the 3D gaussian 
distribution; values beyond 3-sigma are set to 0). (3) Label all 
the nonzero voxels in the density map as 1 (indicating 
structure) and the remaining as 0 (indicating empty space or 
noise). 

C. Filtering Dataset 

The denoising model is only successful if it is trained with 
correct data. However, we have seen many cases in that data 
pairs are not complete/matched. For example, the solved 
protein structure explains only a part of the biological 
structure in the experimental 3D electron density map, as 
EMD-9339 shown in figure 3-I. The reason for this is that the 

                                                           
1 Under the Cryo-EM microscope, the imaging of each atom is shown as an 
electron density cloud (a 3D gaussian distribution in theory). Gaussian 
distribution does not have a boundary since it extends to infinity from the center. 

complete cryo-EM structure is a repeating version of a certain 
structure. Researchers will tend to skip matching the 
repeating pattern because it is redundant work. Even though 
these data pairs are not technically “wrong”, we are unable to 
use them to generate the correct labeled map since we need 
to simulate electron density from PDB files. As in figure 3-
a.(ii), we can see that the simulated map (red) only matches 
the middle portion of the electron density map (gray), and the 
left and right portions are left empty. To filter out such data 
pairs, we proposed a metric based on correlation coefficient 
to measure the similarity between the experimental 3D 
electron density map and the PDB file. 

1) Correlation-Based Similarity Metric 

Correlation coefficient is a statistical measure of the 
strength of the relationship between the relative movements 
of two variables, which range from -1 to 1. In other words, 
when two variables increase and decrease together and show 
a similar signal pattern, the correlated coefficient between 
them will be prominent and approach the maximum value of 
1. This property is very useful since it can measure the 
similarity of two datasets. Precisely, we could calculate the 
correlation coefficient between voxels in a 3D electron 
density map and the simulated map generated from the 
corresponding PDB file. If the solve biological structure 
covers most part of the cryo-EM density map and resolves 
correctly, the simulated map created from it would appear to 
have a similar pattern as the cryo-EM density map and result 
in a high correlation. Figure 3-II. is an example of a 
complete/matched data pair. 

2) Definition of the Similarity Metric 

In this section, we will define the portion of data to 
calculate the correlation coefficient. This may seem 
confusing since one could simply use all of the data (the 
whole experimental density map) to do the calculation, but it 
is not ideal. According to the stats of our dataset, 97.6% of 
data points in experimental density maps belong to empty 
space. If we calculate the correlation using such data, every 
map will end up with a coefficient close to 0 since the empty 
space data points are constantly 0, which indicates no 
correlation, and they dominate the experimental density map.  

To find the precise and informative portion of data for the 
calculation of similarity, the recommended contour level is 
used to identify the core part of the map. Contour level is a 
viewing option and indicates the surface level of the density 
map for visualization; it could be compared to the contour 
line in a 2D image. When researchers deposit a new 
experimental density map into the database, they are required 
to give a recommended contour level based on their 
perception to guide other people viewing the structure. Using 
this property, we can classify the core part of a map as any 
voxel greater than the contour level. Since the recommended 
contour level is widely accessible and it mimics general 
human perceptions, it serves as an excellent resource for 
identifying the core part of maps automatically. 

Sometimes, the recommended contour level is not ideal 
as it is a human subjective value. It may be biased and only 
focus on a tiny high-density area. An alternative approach, 

To define a boundary for our purpose, we will pick a sigma value as a boundary 
threshold. For example, 2� boundary correspond to 95.45% of total value and 3� 
boundary correspond to 99.73% of total value [23]. 



which uses the simulated density map, can sometimes give a 
better result. As we know, the simulated map is an ideal 
representation of proteins; any nonzero values in the 
simulated map infers the imaging of biological structure. We 
can use the nonzero values in the simulated map to represent 
the core part of the structure, which can serve as a percentage 
lower bound of our approach to prevent bias. Specifically, 
when the percentage of experimental density map core voxels 
is less than the percentage of simulated map core voxels, we 
will use the percentage of the simulated map as the core data 
percentile. The equation to calculate the core part percentile 
is, 

 ����� � ��� �1 � �������, 1 � �� !�0�#  (1) 

Where �����  is the core data percentile, Exp is the 
experimental density map, Sim is the simulated map, C is the 
recommended contour level, and �%�&�  is the cumulative 
distribution function equivalent to ��� ' &�. Combining the 
percentile found in equation (1), the equation to find the best 
portion of data is, 

 (&) * +,- ∈ /(&) 0 11 � 2 * �����234 56 (&)7 (2) 

Where the (&) * +,-  indicates experimental and 
simulated maps voxel-wise data pairs. In short, we first find 
the maximum percentage of experimental map core data and 
simulated map. Then multiplying it by two 2 , it is the 
percentage of the top values in the experimental map we will 
use to calculate the correlation coefficient. Finally, the 
correlation coefficient value indicates the similarity of data 

                                                           
2 Timing the percentage by 2, we intentionally add an extra amount of noise voxels 
into the correlation coefficient calculation. According to the nature of correlation 
coefficient, two uncorrelated cluster of points can yield a high correlate if they are 

pairs, which range from 0 to 1 (We consider negative 
correlation as no correlation). 

 +,-89:;,<= � >5;;�(&) * +,-�  (3) 

In figure 3. (c), we present the scatter plots for correlation 
inspection. The first example (EMD-9339) is an incomplete 
data pair; Most of the structure voxels in the electron density 
map are paired with empty voxels in the simulated map. For 
this reason, we can see a wide and dense bar lying under the 
figure (not correlated data points) and give an overall 
correlation of 0.16624. The second example (EMD-3186) is 
a complete data pair; it shows a strong correlation and gives 
a value of 0.85144. 

3) Training Dataset Analysis 

We collected 1889 experimental Cryo-EM density maps 
from the EMDataResource website [22]. The resolution of 
maps is ranged from 2.5 ~ 10 Å, and the distribution of the 
resolutions is intentionally left uncontrolled to accommodate 
the preference in the cryo-EM community. We applied the 
correlation-based similarity metric defined above to evaluate 
the completeness of data pairs of the dataset. The similarity 
distribution of the dataset is shown in fig. 4. 

From the figure, we can observe a gaussian distribution 
on the right side of the histogram; these data pairs are inferred 
as the complete group. The data pairs scattered on the left of 
the red threshold fall far outside of the distribution; thus, they 
are identified as flawed or incomplete data pairs. After 
filtering out unwanted data, our final dataset consists of 1739 
experimental density maps, and it is split randomly into 
training and validation sets with an 80:20 ratio. 

spatially separated. Therefore, adding an extra amount of noise voxel can boost 
the correlation of complete data pairs while merely affects the incomplete data 
pairs, since structure data pairs are spatially separated from noise data pairs. 

 

Fig.3.   Incomplete and complete data pair example and similarity evaluation illistration. Imcomplete example is EMD-9339 with PDB ID code 6N37 
from EMDataResource[22]; Complete example is EMD-3186 with PDB ID code 5FJ6. (a) The transparent gray shape is experimental 3D electron density 
map. Red is the corresponding solved structure. (b) The red figure superimposed on experimental map is the PDB simulated map. (iii) The scatter plot of 
simulated map and experimental map. The complete example’s similarity 0.85144 is significantly higher than incomplete example’s similarity 0.16624. 



 
Fig. 4.   Correlation Coefficients (similarity) of data pairs in training 

dataset. Low similaity (incomplete) data pairs on the right of red threshold 
is filtered out from training dataset. 

D. Training Procedure Hyperparameters 

We used Python TensorFlow as the deep learning 
framework. The loss was calculated based on categorical 
cross-entropy, and the model was trained with an Adam 
optimizer with a learning rate of 0.0002. Since the number of 
structure data points was way less than the number of noise 
data points in the training dataset, we applied a weight ratio 
of 40: 1 to the cross-entropy loss function to balance the loss 
between the two classes. Our model was trained with mini-
batch gradient descent. Each mini-batch consisted of 256 
sliced data cubes of size �64,64,64�. There were and in total 
2405 mini-batches in each epoch and iterated for ten epochs 
to arrive at the final model. We used TensorFlow distributed 
strategy to do multi-GPUs training across 8 *
BC� 8000 D�EF . The training procedure took about 24 
hours.  

III. RESULTS 

The performance of DeepTracer-denoising is promising. 
It is capable of denoise an experimental cryo-EM density map 
efficiently while maintaining high accuracy. The model 
comes with two modes for identifying background noise and 
structural noise. In the following section, we demonstrate the 
operation of DeepTracer-denoising, study our model 
statistically using a validation set and evaluate the accuracy 
of DeepTracer-denoising on a test set composed of 304 newly 
deposited Cryo-EM density maps (deposit after 2021) in the 
EMDataResource website, which is independent of the train 
set. Lastly, we compare our approach with the existing 
algorithm.  

A. Example 

Fig. 5 shows an example of a cryo-EM density map before 
and after the application of DeepTracer-Denoising. In this 
example, the background noises display as density values 
randomly distributed around the molecule, and we can also 
observe a ring shape structural noise surrounding the “waist” 
of the protein. In fig. 5 (ii), we demonstrate how DeepTracer-
Denoising on classifies the type of voxels. Masking out the 
noises, the denoised protein structure is displayed in fig. 5 
(iii). Compared with the solved structure, the denoised 
electron density map matches perfectly with no redundant 
density. 

B. Evaluation of the Model  

The evaluation metric of DeepTracer-Denoising is 
different from the mainstream metrics used in the past. Unlike 
those cryo-EM image (2D) denoising approaches that focus 
on the signal-to-noise ratio (SNR), we will be evaluating and 
studying our model based on confusion matrix and precision-
recall curve since the core of our approach is a classification 
CNN model.  

 

Fig. 5.   DeepTracer-Denoising Example: EMD-21150 before and after denoising. (i) EMD-21150 density map displayed with a contour level of 1.6. (ii) 
The same map as input density map, while different region is labeled as different color based on its classification result. Background noise is labeled as 
tranparent red, ring shape structual noise is labeled as transparent yellow, and the structure is label as blue. (iii) Denoised electron density map (displayed 
at the contour level of 1.6) and the solve biological structure for comparison. 



1) Definition of the Confusion Matrix 

We define the type I error (False Positive) as classifying 
the structure voxel as noise since the primary goal of 
DeepTracer-Denoising is eliminating noise as much as 
possible while preserving the main structure untouched. The 
type II error (False Negative) is classifying noise voxel as 
structure. To be concise, we refer to the noise prediction as 
positive and structure prediction as negative from now on. In 
the following sections, all empty space voxels, 0 value voxel 
in input map, are (by default) excluded from the evaluation; 
their prediction result is trivial as the empty space voxel are 
assumed as noise. Only those which start with a nonzero 
value and predicted as noise will be counted toward the total 
true positive (TP) in the evaluation.  

2) Optimal Threshold of Classification 

For a normal classification model that is trained with a 
balanced dataset (or weight balanced), threshold is usually 
chosen at midpoints of the interval, for example, 0.5 in terms 
of binary classification. However, this threshold is not ideal 
for our purpose. We will find thresholds for different cases. 

Firstly, we analyzed the general performance of 
DeepTracer-Denoising on the validation set, which was split 
from the train set and contained 347 experimental maps. 
Using the validation set, we gathered all negative class 
voxel’s predictions into a group and all positive class voxel’s 
predictions into another group and plotted the histograms in 

Fig. 7.I.(a). The histogram is a way to inspect the scale of the 
confusion matrix. The positive class (red) will be true positive 
(TP) if on the left of the threshold and false negative (FN) if 
on the right; the Negative class (blue) will be false positive 
(FP) if on the left and true negative (TN) if on the right. 
Furthermore, we generate the precision-recall curve of the 
validation set (Fig. 6.I.(b)) with G-mean to find the optimal 
threshold, where the G-mean is an unbiased evaluation metric 
for imbalanced classification. The formula is, 

 D�G:H � I JK
JKLMN ∗ JN

MKLJN  (4) 

The general performance of this model is significant as 
shown in fig. 6.I.(b). The G-mean metric gives an optimal 
threshold of 0.035 for classification, which coincide with 
two classes’ relative histogram intersection (as in fig. 6.I.(a)). 
Based on our experiment, we conclude that P. PQR  is the 
optimal threshold for identifying background noise. 

We also studied our model’s structural noise 
classification accuracy. Since background noise voxels 
dominate the positive class, to reveal the performance of 
structural noise denoising, we exclude all the data points 
classified as background noise – prediction values smaller 
than 0.035 - from the positive class. After that, we used the 
remaining data to generate the precision-recall curve (Fig. 6. 

 

Fig. 6.   Threshold analysis for background noise and strctural noise. Optimal threshold for background noise and strctural noise are 0.035 and 0.495 
respectively. I.(a) The relative frequency histogram of positive and negative classes’ probability predictions. They are overlayed for comparison. I.(b) The 
percision-recall curve representing the performance of background noise classification. II.(a) The absolute frequency histogram of positive and negative 
classes’ probability predictions. II.(b) The percision-recall curve of the validation set excluding the background noise, representing the structural noise 
classification performance. 



II. (b)) for structural noise. The optimal threshold given by 
the G-mean metric for classifying structural noise is P. STR. 
This value coincides with the intersection of the two classes’ 
absolute frequency histogram (Fig. 6. II. (a)). 

3) Test Set Evaluating 

The test set is composed of 304 experimental cryo-EM 
density maps deposited in the database after we build our 
train set. It is filtered by our correlation-based metric with the 
same threshold, and it shares a similar resolution distribution 
as the train set, which ranges from 2.5Å to 10.0Å . When 
using background noise mode, among the 304 test maps, the 
average false positive rate (FPR) is 3.537%, the false negative 
rate (FNR) is 2.298%, and precision is 99.87%. When using 
structural noise mode, the average false positive rate is 
19.788%, the false negative rate is 0.360 %, and precision is 
99.27%. At first glance, this performance is a lot worse than 
the background noise above since the type I error FPR is 
much higher than the background noise. However, if we 
calculate the accuracy (ACC) for two modes, which the 

equation is ��� � JKLJN
JKLMKLJNLMN , we will find ���U.UVW �

97.658%  and ���U.XYW � 98.950% . A reason for FPR 
“conflicts” with ACC is the fact that negative and positive 
classes are imbalanced. In the test set, the number of negative 
class voxel is ~27 times of the positive class. Furthermore, in 
test set evaluation, we are applying the structural noise 
classification indiscriminately to all of the maps, while some 

maps do not have structural noise. In reality, users are able to 
inspect the map before the application, and they can choose 
the most suitable mode to do denoising. The detail statistics 
for different class is listed in TABLE I. 

C. Comparing with Existing Algorithms 

The DeepTracer-Denoising model is highly efficient. Our 
method took less than half mins to denoising one map with 
one RTX 8000. Unfortunally, there is no comparable 
algorithm in the past, so we only compared our method with 
ChimeraX’s [20] hide-dust tool, which is a popular 3D 
electron density map application. In fig. 7, ChimeraX can 
denoise only part of the background noise while still suffers 
from the exploding noise when viewing at a low contour 
level. In contrast, DeepTracer-Denoising can view the 
structure down to level 0 without the interference of noises. 

IV. DISCUSSION 

In this work, we proposed a new approach for cryo-EM 
denoising through approaches the task as a classification 
problem. Unlike most of the mainstream methods in the 
denoising field, which focus on improving the signal-to-noise 
(SNR) of cryo-EM images, we target eliminating noise 
completely invisible. Our approach is a successful attempt for 
this purpose; it has achieved an impressive denoising 
performance on both background noise and structural noise. 

TABLE I.  ACC, FP, FN FOR DIFFERENT RESOLUTION AND DENOISING MODE ON VAL & TEST SET 

Resolution (Å) [2.5 – 3) [3 – 4) [4 – 5) [5 - 6) [6 - 7) [7 - 8) [8 - 9) [9 – 10] 

Background 
Noise Mode 

ACC % 94.5 93.8 89.2 88.1 87.9 87.7 92.3 89.6 

FPR % 2.81 2.67 0.93 0.71 1.31 0.93 2.33 4.49 

FNR % 6.31 7.19 21.15 24.55 25.20 18.66 11.34 27.46 

Structural 
Noise Mode 

ACC % 97.7 96.8 88.7 87.8 86.9 87.7 91.4 86.8 

FPR % 13.35 13.31 3.72 3.11 7.45 0.93 7.06 5.24 

FNR % 1.56 1.75 17.64 20.85 20.5 18.66 10.44 22.22 

Dataset Fraction % 13.8% 53.9% 17.8% 4.3% 4.5% 2.3% 1.4% 2.0% 

 

 

Fig .7.   Comparison of ChimeraX hide-dust tool and DeepTracer-Denoising. ChimeraX unable to denoise structual noise, and the background noise still 
shows up when countour level goes down. DeepTracer-Denoising can visualize the structure at a countour level as low as 0 without interference.  



Though the overall performance of DeepTracer-
Denoising is great, there are a few limitations presented. First 
of all, the labels we generated in the training dataset are not 
truly correct, or to be precise, there are no such “correct” 
labels. The simulated density map is distributed as gaussian 
distribution, and there is no correct threshold to use to 
determine which portions of density should be classified as 
structure. We choose a 3-sigma threshold, which is equivalent 
to 99.73% of the theoretical portion of density. However, 
choosing a 2-sigma threshold, which is equivalent to 95.45% 
of the theoretical portion of density, is also a great option, and 
it is very like to give a better denoising performance. 
Secondly, different maps suit different denoising modes, and 
users sometimes have to inspect the denoising results to get 
the best one manually. In most cases, our model is guaranteed 
to find an ideal result from one of the two modes. 

We believe our method has great potential. It can be 
adopted to denoise other 3D biological images and solve 
problems other than denoising. One application is designing 
an automated bounding box finding algorithm for electron 
density maps, which allows users to cut density maps to 
smaller sizes and save storage space and computation power. 

V. CONCLUSION 

In this paper, we present a process to construct a 
Convolutional Neural Network (CNN) model for 3D electron 
density map denoising. The key idea of DeepTracer-
Denoising is considering the denoising task as a classification 
problem, separating the noise and structure voxels into two 
classes, and masking out noise based on the classification 
result. In order to build the training dataset, we proposed a 
metric to measure the similarity between the 3D electron 
density map and the corresponding solved biomolecule 
structure for dataset filtering. Our model is designed to work 
on medium to high-resolution maps ranging from 
2.5 Å to  10.0Å , and it is configurated with two modes to 
tackle both background noise and structural noise. When 
testing on 304 cryo-EM density maps, the background noise 
mode correctly identifies 97.70% of background noise (TPR) 
while preserving 96.46% density of the native structure 
(TNR). For maps that contain structural noise, DeepTracer-
Denoising achieves an overall accuracy (ACC) of 98.95%. 
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